Selasa, 09 November 2010

Fondasi Matematika Phytagoras

Biografi Phytagoras

Phytagoras lahir pada tahun 570 SM, di pulau Samos, di daerah Ionia. Pythagoras (582 SM – 496 SM, bahasa Yunani: Πυθαγόρας) adalah seorang matematikawan dan filsuf Yunani yang paling dikenal melalui teoremanya.Dikenal sebagai "Bapak Bilangan", dia memberikan sumbangan yang penting terhadap filsafat dan ajaran keagamaan pada akhir abad ke-6 SM. Kehidupan dan ajarannya tidak begitu jelas akibat banyaknya legenda dan kisah-kisah buatan mengenai dirinya.

Dalam tradisi Yunani, diceritakan bahwa ia banyak melakukan perjalanan, diantaranya ke Mesir. Perjalanan Phytagoras ke Mesir merupakan salah satu bentuk usahanya untuk berguru, menimba ilmu, pada imam-imam di Mesir. Konon, karena kecerdasannya yang luar biasa, para imam yang dikunjunginya merasa tidak sanggup untuk menerima Phytagoras sebagai murid. Namun, pada akhirnya ia diterima sebagai murid oleh para imam di Thebe. Disini ia belajar berbagai macam misteri. Selain itu, Phytagoras juga berguru pada imam-imam Caldei untuk belajar Astronomi, pada para imam Phoenesia untuk belajar Logistik dan Geometri, pada para Magi untuk belajar ritus-ritus mistik, dan dalam perjumpaannya dengan Zarathustra, ia belajar teori perlawanan.

Selepas berkelana untuk mencari ilmu, Phytagoras kembali ke Samos dan meneruskan pencarian filsafatnya serta menjadi guru untuk anak Polycartes, penguasa tiran di Samos. Kira-kira pada tahun 530, karena tidak setuju dengan pemerintahan tyrannos Polycartes, ia berpindah ke kota Kroton di Italia Selatan. Di kota ini, Phytagoras mendirikan sebuah tarekat beragama yang kemudian dikenal dengan sebutan “Kaum Phytagorean.”

Kaum Phytagorean

Kaum phytagorean sangat berjasa dalam meneruskan pemikiran-pemikiran Phytagoras. Semboyan mereka yang terkenal adalah “authos epha, ipse dixit” (dia sendiri yang telah mengatakan demikian).2 Kaum ini diorganisir menurut aturan-aturan hidup bersama, dan setiap orang wajib menaatinya. Mereka menganggap filsafat dan ilmu pengetahuan sebagai jalan hidup, sarana supaya setiap orang menjadi tahir, sehingga luput dari perpindahan jiwa terus-menerus.
Diantara pengikut-pengikut Phytagoras di kemudian hari berkembang dua aliran. Yang pertama disebut akusmatikoi (akusma = apa yang telah didengar; peraturan): mereka mengindahkan penyucian dengan menaati semua peraturan secara seksama. Yang kedua disebut mathematikoi (mathesis = ilmu pengetahuan): mereka mengutamakan ilmu pengetahuan, khususnya ilmu pasti.

Pemikiran Phytagoras

Phytagoras percaya bahwa angka bukan unsur seperti udara dan air yang banyak dipercaya sebagai unsur semua benda. Angka bukan anasir alam. Pada dasarnya kaum Phytagorean menganggap bahwa pandangan Anaximandros tentang to Apeiron dekat juga dengan pandangan Phytagoras. To Apeiron melepaskan unsur-unsur berlawanan agar terjadi keseimbangan atau keadilan (dikhe). Pandangan Phytagoras mengungkapkan bahwa harmoni terjadi berkat angka. Bila segala hal adalah angka, maka hal ini tidak saja berarti bahwa segalanya bisa dihitung, dinilai dan diukur dengan angka dalam hubungan yang proporsional dan teratur, melainkan berkat angka-angka itu segala sesuatu menjadi harmonis, seimbang. Dengan kata lain tata tertib terjadi melalui angka-angka.

Salah satu peninggalan Phytagoras yang terkenal adalah teorema Pythagoras, yang menyatakan bahwa kuadrat hipotenusa dari suatu segitiga siku-siku adalah sama dengan jumlah kuadrat dari kaki-kakinya (sisi-sisi siku-sikunya). Walaupun fakta di dalam teorema ini telah banyak diketahui sebelum lahirnya Pythagoras, namun teorema ini dikreditkan kepada Pythagoras karena ia lah yang pertama membuktikan pengamatan ini secara matematis.[1]

Pythagoras dan murid-muridnya percaya bahwa segala sesuatu di dunia ini berhubungan dengan matematika, dan merasa bahwa segalanya dapat diprediksikan dan diukur dalam siklus beritme. Ia percaya keindahan matematika disebabkan segala fenomena alam dapat dinyatakan dalam bilangan-bilangan atau perbandingan bilangan. Ketika muridnya Hippasus menemukan bahwa \sqrt{2}, hipotenusa dari segitiga siku-siku sama kaki dengan sisi siku-siku masing-masing 1, adalah bilangan irasional, Pythagoras memutuskan untuk membunuhnya karena tidak dapat membantah bukti yang diajukan Hippasus

Ref : http://id.wikipedia.org/wiki/Pythagoras
http://dpenga.blogspot.com/2008/10/phytagoras.html

Leonhard Euler

Leonhard Euler's father was Paul Euler. Paul Euler had studied theology at the University of Basel and had attended Jacob Bernoulli's lectures there. In fact Paul Euler and Johann Bernoulli had both lived in Jacob Bernoulli's house while undergraduates at Basel. Paul Euler became a Protestant minister and married Margaret Brucker, the daughter of another Protestant minister. Their son Leonhard Euler was born in Basel, but the family moved to Riehen when he was one year old and it was in Riehen, not far from Basel, that Leonard was brought up. Paul Euler had, as we have mentioned, some mathematical training and he was able to teach his son elementary mathematics along with other subjects.
Leonhard was sent to school in Basel and during this time he lived with his grandmother on his mother's side. This school was a rather poor one, by all accounts, and Euler learnt no mathematics at all from the school. However his interest in mathematics had certainly been sparked by his father's teaching, and he read mathematics texts on his own and took some private lessons. Euler's father wanted his son to follow him into the church and sent him to the University of Basel to prepare for the ministry. He entered the University in 1720, at the age of 14, first to obtain a general education before going on to more advanced studies. Johann Bernoulli soon discovered Euler's great potential for mathematics in private tuition that Euler himself engineered. Euler's own account given in his unpublished autobiographical writings, see [1], is as follows:-
... I soon found an opportunity to be introduced to a famous professor Johann Bernoulli. ... True, he was very busy and so refused flatly to give me private lessons; but he gave me much more valuable advice to start reading more difficult mathematical books on my own and to study them as diligently as I could; if I came across some obstacle or difficulty, I was given permission to visit him freely every Sunday afternoon and he kindly explained to me everything I could not understand ...
In 1723 Euler completed his Master's degree in philosophy having compared and contrasted the philosophical ideas of Descartes and Newton. He began his study of theology in the autumn of 1723, following his father's wishes, but, although he was to be a devout Christian all his life, he could not find the enthusiasm for the study of theology, Greek and Hebrew that he found in mathematics. Euler obtained his father's consent to change to mathematics after Johann Bernoulli had used his persuasion. The fact that Euler's father had been a friend of Johann Bernoulli's in their undergraduate days undoubtedly made the task of persuasion much easier.
Euler completed his studies at the University of Basel in 1726. He had studied many mathematical works during his time in Basel, and Calinger [24] has reconstructed many of the works that Euler read with the advice of Johann Bernoulli. They include works by Varignon, Descartes, Newton, Galileo, van Schooten, Jacob Bernoulli, Hermann, Taylor and Wallis. By 1726 Euler had already a paper in print, a short article on isochronous curves in a resisting medium. In 1727 he published another article on reciprocal trajectories and submitted an entry for the 1727 Grand Prize of the Paris Academy on the best arrangement of masts on a ship.
The Prize of 1727 went to Bouguer, an expert on mathematics relating to ships, but Euler's essay won him second place which was a fine achievement for the young graduate. However, Euler now had to find himself an academic appointment and when Nicolaus(II) Bernoulli died in St Petersburg in July 1726 creating a vacancy there, Euler was offered the post which would involve him in teaching applications of mathematics and mechanics to physiology. He accepted the post in November 1726 but stated that he did not want to travel to Russia until the spring of the following year. He had two reasons to delay. He wanted time to study the topics relating to his new post but also he had a chance of a post at the University of Basel since the professor of physics there had died. Euler wrote an article on acoustics, which went on to become a classic, in his bid for selection to the post but he was not chosen to go forward to the stage where lots were drawn to make the final decision on who would fill the chair. Almost certainly his youth (he was 19 at the time) was against him. However Calinger [24] suggests:-
This decision ultimately benefited Euler, because it forced him to move from a small republic into a setting more adequate for his brilliant research and technological work.
As soon as he knew he would not be appointed to the chair of physics, Euler left Basel on 5 April 1727. He travelled down the Rhine by boat, crossed the German states by post wagon, then by boat from Lübeck arriving in St Petersburg on 17 May 1727. He had joined the St Petersburg Academy of Sciences two years after it had been founded by Catherine I the wife of Peter the Great. Through the requests of Daniel Bernoulli and Jakob Hermann, Euler was appointed to the mathematical-physical division of the Academy rather than to the physiology post he had originally been offered. At St Petersburg Euler had many colleagues who would provide an exceptional environment for him [1]:-
Nowhere else could he have been surrounded by such a group of eminent scientists, including the analyst, geometer Jakob Hermann, a relative; Daniel Bernoulli, with whom Euler was connected not only by personal friendship but also by common interests in the field of applied mathematics; the versatile scholar Christian Goldbach, with whom Euler discussed numerous problems of analysis and the theory of numbers; F Maier, working in trigonometry; and the astronomer and geographer J-N Delisle.
Euler served as a medical lieutenant in the Russian navy from 1727 to 1730. In St Petersburg he lived with Daniel Bernoulli who, already unhappy in Russia, had requested that Euler bring him tea, coffee, brandy and other delicacies from Switzerland. Euler became professor of physics at the Academy in 1730 and, since this allowed him to become a full member of the Academy, he was able to give up his Russian navy post.
Daniel Bernoulli held the senior chair in mathematics at the Academy but when he left St Petersburg to return to Basel in 1733 it was Euler who was appointed to this senior chair of mathematics. The financial improvement which came from this appointment allowed Euler to marry which he did on 7 January 1734, marrying Katharina Gsell, the daughter of a painter from the St Petersburg Gymnasium. Katharina, like Euler, was from a Swiss family. They had 13 children altogether although only five survived their infancy. Euler claimed that he made some of his greatest mathematical discoveries while holding a baby in his arms with other children playing round his feet.
We will examine Euler's mathematical achievements later in this article but at this stage it is worth summarising Euler's work in this period of his career. This is done in [24] as follows:-
... after 1730 he carried out state projects dealing with cartography, science education, magnetism, fire engines, machines, and ship building. ... The core of his research program was now set in place: number theory; infinitary analysis including its emerging branches, differential equations and the calculus of variations; and rational mechanics. He viewed these three fields as intimately interconnected. Studies of number theory were vital to the foundations of calculus, and special functions and differential equations were essential to rational mechanics, which supplied concrete problems.
The publication of many articles and his book Mechanica (1736-37), which extensively presented Newtonian dynamics in the form of mathematical analysis for the first time, started Euler on the way to major mathematical work.
Euler's health problems began in 1735 when he had a severe fever and almost lost his life. However, he kept this news from his parents and members of the Bernoulli family back in Basel until he had recovered. In his autobiographical writings Euler says that his eyesight problems began in 1738 with overstrain due to his cartographic work and that by 1740 he had [24]:-
... lost an eye and [the other] currently may be in the same danger.
However, Calinger in [24] argues that Euler's eyesight problems almost certainly started earlier and that the severe fever of 1735 was a symptom of the eyestrain. He also argues that a portrait of Euler from 1753 suggests that by that stage the sight of his left eye was still good while that of his right eye was poor but not completely blind. Calinger suggests that Euler's left eye became blind from a later cataract rather than eyestrain.
By 1740 Euler had a very high reputation, having won the Grand Prize of the Paris Academy in 1738 and 1740. On both occasions he shared the first prize with others. Euler's reputation was to bring an offer to go to Berlin, but at first he preferred to remain in St Petersburg. However political turmoil in Russia made the position of foreigners particularly difficult and contributed to Euler changing his mind. Accepting an improved offer Euler, at the invitation of Frederick the Great, went to Berlin where an Academy of Science was planned to replace the Society of Sciences. He left St Petersburg on 19 June 1741, arriving in Berlin on 25 July. In a letter to a friend Euler wrote:-
I can do just what I wish [in my research] ... The king calls me his professor, and I think I am the happiest man in the world.
Even while in Berlin Euler continued to receive part of his salary from Russia. For this remuneration he bought books and instruments for the St Petersburg Academy, he continued to write scientific reports for them, and he educated young Russians.
Maupertuis was the president of the Berlin Academy when it was founded in 1744 with Euler as director of mathematics. He deputised for Maupertuis in his absence and the two became great friends. Euler undertook an unbelievable amount of work for the Academy [1]:-
... he supervised the observatory and the botanical gardens; selected the personnel; oversaw various financial matters; and, in particular, managed the publication of various calendars and geographical maps, the sale of which was a source of income for the Academy. The king also charged Euler with practical problems, such as the project in 1749 of correcting the level of the Finow Canal ... At that time he also supervised the work on pumps and pipes of the hydraulic system at Sans Souci, the royal summer residence.
This was not the limit of his duties by any means. He served on the committee of the Academy dealing with the library and of scientific publications. He served as an advisor to the government on state lotteries, insurance, annuities and pensions and artillery. On top of this his scientific output during this period was phenomenal.
During the twenty-five years spent in Berlin, Euler wrote around 380 articles. He wrote books on the calculus of variations; on the calculation of planetary orbits; on artillery and ballistics (extending the book by Robins); on analysis; on shipbuilding and navigation; on the motion of the moon; lectures on the differential calculus; and a popular scientific publication Letters to a Princess of Germany (3 vols., 1768-72).
In 1759 Maupertuis died and Euler assumed the leadership of the Berlin Academy, although not the title of President. The king was in overall charge and Euler was not now on good terms with Frederick despite the early good favour. Euler, who had argued with d'Alembert on scientific matters, was disturbed when Frederick offered d'Alembert the presidency of the Academy in 1763. However d'Alembert refused to move to Berlin but Frederick's continued interference with the running of the Academy made Euler decide that the time had come to leave.
In 1766 Euler returned to St Petersburg and Frederick was greatly angered at his departure. Soon after his return to Russia, Euler became almost entirely blind after an illness. In 1771 his home was destroyed by fire and he was able to save only himself and his mathematical manuscripts. A cataract operation shortly after the fire, still in 1771, restored his sight for a few days but Euler seems to have failed to take the necessary care of himself and he became totally blind. Because of his remarkable memory he was able to continue with his work on optics, algebra, and lunar motion. Amazingly after his return to St Petersburg (when Euler was 59) he produced almost half his total works despite the total blindness.
Euler of course did not achieve this remarkable level of output without help. He was helped by his sons, Johann Albrecht Euler who was appointed to the chair of physics at the Academy in St Petersburg in 1766 (becoming its secretary in 1769) and Christoph Euler who had a military career. Euler was also helped by two other members of the Academy, W L Krafft and A J Lexell, and the young mathematician N Fuss who was invited to the Academy from Switzerland in 1772. Fuss, who was Euler's grandson-in-law, became his assistant in 1776. Yushkevich writes in [1]:-
.. the scientists assisting Euler were not mere secretaries; he discussed the general scheme of the works with them, and they developed his ideas, calculating tables, and sometimes compiled examples.
For example Euler credits Albrecht, Krafft and Lexell for their help with his 775 page work on the motion of the moon, published in 1772. Fuss helped Euler prepare over 250 articles for publication over a period on about seven years in which he acted as Euler's assistant, including an important work on insurance which was published in 1776.

He also wrote a eulogy of Euler, which you can see at this link
Yushkevich describes the day of Euler's death in [1]:-
On 18 September 1783 Euler spent the first half of the day as usual. He gave a mathematics lesson to one of his grandchildren, did some calculations with chalk on two boards on the motion of balloons; then discussed with Lexell and Fuss the recently discovered planet Uranus. About five o'clock in the afternoon he suffered a brain haemorrhage and uttered only "I am dying" before he lost consciousness. He died about eleven o'clock in the evening.
After his death in 1783 the St Petersburg Academy continued to publish Euler's unpublished work for nearly 50 more years.
Euler's work in mathematics is so vast that an article of this nature cannot but give a very superficial account of it. He was the most prolific writer of mathematics of all time. He made large bounds forward in the study of modern analytic geometry and trigonometry where he was the first to consider sin, cos etc. as functions rather than as chords as Ptolemy had done.
He made decisive and formative contributions to geometry, calculus and number theory. He integrated Leibniz's differential calculus and Newton's method of fluxions into mathematical analysis. He introduced beta and gamma functions, and integrating factors for differential equations. He studied continuum mechanics, lunar theory with Clairaut, the three body problem, elasticity, acoustics, the wave theory of light, hydraulics, and music. He laid the foundation of analytical mechanics, especially in his Theory of the Motions of Rigid Bodies (1765).
We owe to Euler the notation f (x) for a function (1734), e for the base of natural logs (1727), i for the square root of -1 (1777), π for pi, ∑ for summation (1755), the notation for finite differences Δy and Δ2y and many others.
Let us examine in a little more detail some of Euler's work. Firstly his work in number theory seems to have been stimulated by Goldbach but probably originally came from the interest that the Bernoullis had in that topic. Goldbach asked Euler, in 1729, if he knew of Fermat's conjecture that the numbers 2n + 1 were always prime if n is a power of 2. Euler verified this for n = 1, 2, 4, 8 and 16 and, by 1732 at the latest, showed that the next case 232 + 1 = 4294967297 is divisible by 641 and so is not prime. Euler also studied other unproved results of Fermat and in so doing introduced the Euler phi function φ(n), the number of integers k with 1 ≤ kn and k coprime to n. He proved another of Fermat's assertions, namely that if a and b are coprime then a2 + b2 has no divisor of the form 4n - 1, in 1749.
Perhaps the result that brought Euler the most fame in his young days was his solution of what had become known as the Basel problem. This was to find a closed form for the sum of the infinite series ζ(2) = ∑ (1/n2), a problem which had defeated many of the top mathematicians including Jacob Bernoulli, Johann Bernoulli and Daniel Bernoulli. The problem had also been studied unsuccessfully by Leibniz, Stirling, de Moivre and others. Euler showed in 1735 that ζ(2) = π2/6 but he went on to prove much more, namely that ζ(4) = π4/90, ζ(6) = π6/945, ζ(8) = π8/9450, ζ(10) = π10/93555 and ζ(12) = 691π12/638512875. In 1737 he proved the connection of the zeta function with the series of prime numbers giving the famous relation
ζ(s) = ∑ (1/ns) = ∏ (1 - p-s)-1
Here the sum is over all natural numbers n while the product is over all prime numbers.
By 1739 Euler had found the rational coefficients C in ζ(2n) = Cπ2n in terms of the Bernoulli numbers.
Other work done by Euler on infinite series included the introduction of his famous Euler's constant γ, in 1735, which he showed to be the limit of
1/1 + 1/2 + 1/3 + ... + 1/n - logen
as n tends to infinity. He calculated the constant γ to 16 decimal places. Euler also studied Fourier series and in 1744 he was the first to express an algebraic function by such a series when he gave the result
π/2 - x/2 = sin x + (sin 2x)/2 + (sin 3x)/3 + ...
in a letter to Goldbach. Like most of Euler's work there was a fair time delay before the results were published; this result was not published until 1755.
Euler wrote to James Stirling on 8 June 1736 telling him about his results on summing reciprocals of powers, the harmonic series and Euler's constant and other results on series. In particular he wrote [60]:-
Concerning the summation of very slowly converging series, in the past year I have lectured to our Academy on a special method of which I have given the sums of very many series sufficiently accurately and with very little effort.
He then goes on to describe what is now called the Euler-Maclaurin summation formula. Two years later Stirling replied telling Euler that Maclaurin:-
... will be publishing a book on fluxions. ... he has two theorems for summing series by means of derivatives of the terms, one of which is the self-same result that you sent me.
Euler replied:-
... I have very little desire for anything to be detracted from the fame of the celebrated Mr Maclaurin since he probably came upon the same theorem for summing series before me, and consequently deserves to be named as its first discoverer. For I found that theorem about four years ago, at which time I also described its proof and application in greater detail to our Academy.
Some of Euler's number theory results have been mentioned above. Further important results in number theory by Euler included his proof of Fermat's Last Theorem for the case of n = 3. Perhaps more significant than the result here was the fact that he introduced a proof involving numbers of the form a + b√-3 for integers a and b. Although there were problems with his approach this eventually led to Kummer's major work on Fermats Last Theorem and to the introduction of the concept of a ring.
One could claim that mathematical analysis began with Euler. In 1748 in Introductio in analysin infinitorum Euler made ideas of Johann Bernoulli more precise in defining a function, and he stated that mathematical analysis was the study of functions. This work bases the calculus on the theory of elementary functions rather than on geometric curves, as had been done previously. Also in this work Euler gave the formula
eix = cos x + i sin x.
In Introductio in analysin infinitorum Euler dealt with logarithms of a variable taking only positive values although he had discovered the formula
ln(-1) = πi
in 1727. He published his full theory of logarithms of complex numbers in 1751.
Analytic functions of a complex variable were investigated by Euler in a number of different contexts, including the study of orthogonal trajectories and cartography. He discovered the Cauchy-Riemann equations in 1777, although d'Alembert had discovered them in 1752 while investigating hydrodynamics.
In 1755 Euler published Institutiones calculi differentialis which begins with a study of the calculus of finite differences. The work makes a thorough investigation of how differentiation behaves under substitutions.
In Institutiones calculi integralis (1768-70) Euler made a thorough investigation of integrals which can be expressed in terms of elementary functions. He also studied beta and gamma functions, which he had introduced first in 1729. Legendre called these 'Eulerian integrals of the first and second kind' respectively while they were given the names beta function and gamma function by Binet and Gauss respectively. As well as investigating double integrals, Euler considered ordinary and partial differential equations in this work.
The calculus of variations is another area in which Euler made fundamental discoveries. His work Methodus inveniendi lineas curvas ... published in 1740 began the proper study of the calculus of variations. In [12] it is noted that Carathéodory considered this as:-
... one of the most beautiful mathematical works ever written.
Problems in mathematical physics had led Euler to a wide study of differential equations. He considered linear equations with constant coefficients, second order differential equations with variable coefficients, power series solutions of differential equations, a method of variation of constants, integrating factors, a method of approximating solutions, and many others. When considering vibrating membranes, Euler was led to the Bessel equation which he solved by introducing Bessel functions.
Euler made substantial contributions to differential geometry, investigating the theory of surfaces and curvature of surfaces. Many unpublished results by Euler in this area were rediscovered by Gauss. Other geometric investigations led him to fundamental ideas in topology such as the Euler characteristic of a polyhedron.
In 1736 Euler published Mechanica which provided a major advance in mechanics. As Yushkevich writes in [1]:-
The distinguishing feature of Euler's investigations in mechanics as compared to those of his predecessors is the systematic and successful application of analysis. Previously the methods of mechanics had been mostly synthetic and geometrical; they demanded too individual an approach to separate problems. Euler was the first to appreciate the importance of introducing uniform analytic methods into mechanics, thus enabling its problems to be solved in a clear and direct way.
In Mechanica Euler considered the motion of a point mass both in a vacuum and in a resisting medium. He analysed the motion of a point mass under a central force and also considered the motion of a point mass on a surface. In this latter topic he had to solve various problems of differential geometry and geodesics.
Mechanica was followed by another important work in rational mechanics, this time Euler's two volume work on naval science. It is described in [24] as:-
Outstanding in both theoretical and applied mechanics, it addresses Euler's intense occupation with the problem of ship propulsion. It applies variational principles to determine the optimal ship design and first established the principles of hydrostatics ... Euler here also begins developing the kinematics and dynamics of rigid bodies, introducing in part the differential equations for their motion.
Of course hydrostatics had been studied since Archimedes, but Euler gave a definitive version.
In 1765 Euler published another major work on mechanics Theoria motus corporum solidorum in which he decomposed the motion of a solid into a rectilinear motion and a rotational motion. He considered the Euler angles and studied rotational problems which were motivated by the problem of the precession of the equinoxes.
Euler's work on fluid mechanics is also quite remarkable. He published a number of major pieces of work through the 1750s setting up the main formulae for the topic, the continuity equation, the Laplace velocity potential equation, and the Euler equations for the motion of an inviscid incompressible fluid. In 1752 he wrote:-
However sublime are the researches on fluids which we owe to Messrs Bernoulli, Clairaut and d'Alembert, they flow so naturally from my two general formulae that one cannot sufficiently admire this accord of their profound meditations with the simplicity of the principles from which I have drawn my two equations ...
Euler contributed to knowledge in many other areas, and in all of them he employed his mathematical knowledge and skill. He did important work in astronomy including [1]:-
... determination of the orbits of comets and planets by a few observations, methods of calculation of the parallax of the sun, the theory of refraction, consideration of the physical nature of comets, .... His most outstanding works, for which he won many prizes from the Paris Académie des Sciences, are concerned with celestial mechanics, which especially attracted scientists at that time.
In fact Euler's lunar theory was used by Tobias Mayer in constructing his tables of the moon. In 1765 Mayer's widow received £3000 from Britain for the contribution the tables made to the problem of the determination of the longitude, while Euler received £300 from the British government for his theoretical contribution to the work.
Euler also published on the theory of music, in particular he published Tentamen novae theoriae musicae in 1739 in which he tried to make music:-
... part of mathematics and deduce in an orderly manner, from correct principles, everything which can make a fitting together and mingling of tones pleasing.
However, according to [8] the work was:-
... for musicians too advanced in its mathematics and for mathematicians too musical.
Cartography was another area that Euler became involved in when he was appointed director of the St Petersburg Academy's geography section in 1735. He had the specific task of helping Delisle prepare a map of the whole of the Russian Empire. The Russian Atlas was the result of this collaboration and it appeared in 1745, consisting of 20 maps. Euler, in Berlin by the time of its publication, proudly remarked that this work put the Russians well ahead of the Germans in the art of cartography.

Senin, 08 November 2010

Matematika pembentuk alam

“Dan semua yang ada di jagat raya semesta ini adalah menurut perhitungan-perhitungan“
Kalimat tersebut terasa provokatif, namun bila ditelaah lebih dalam kita akan menemukan kenyataan-kenyataan yang melingkupinya. Pada masa awal pengkajian dan penemuan dalil-dalil atau teori-teori Matematika lebih dikenal sebagai ilmu rasional yang pasti namun sebenarnya matematika jugalah yang mampu mendorong pada ketidakpastian karena pada perkembangannya kini cabang ilmu matematika telah tumbuh berkembang untuk menjelaskan fenomena ketidakteraturan dan ketidakpastian, sebagai contoh bisa kita lihat pada teori statistic non parametric dan teori fisika relativitas. Kesemuanya itu justru muncul dari perhitungan yang pasti bukan.
Hal tersebut telah membawa pada kenyataan bahwa teori matematika juga bersifat sementara (tentative) atau tidak absolut, dan hal ini tentunya juga sangat menentukan perkembangan iptek yang memang berlandaskan matematika. Keadaan ini justru akan lebih merangsang akal pikiran manusia untuk terus mengembangkan pemikirannya dan lebih ekploratif secara non linear dalam menemukan teorema-teorema baru yang dirasa lebih mendekati kebenaran ilmiah.

John terry, simbol Chelsea

Setiap klub punya simbol dan bagi Chelsea John Terry adalah simbol itu. Bek internasional Inggris itu, yang memang tak pernah membela klub lain kecuali The Blues, menandatangani kontrak baru di Stamford Bridge. Situs resmi Chelsea, Senin (31/8/2009), mengumumkan kabar tersebut, bahwa Terry telah menegaskan komitmennya dengan menyetujui perpanjangan kontrak baru sampai musim panas 2014.
Jika tak diutak-atik, maka kontrak itu berlaku sampai pemain tersebut berusia 32 tahun kurang lima bulan. Dan itu berarti Terry punya masa menetap di Chelsea selama 19 tahun, sebagaimana ia sudah menimba ilmu di akademi klub London barat tersebut sejak 1995, dalam usia 14 tahun. Chelsea tentu saja memberi kontrak yang tidak sembarangan untuk membuat Terry bertahan selama itu, apalagi ia terakhir sempat dikejar-kejar Manchester City yang berani menjadikannya pemain termahal dunia. Pemilik klub Roman Abramovich kabarnya memberi gaji baru buat Terry sebesar 160 ribu poundsterling atau sekitar Rp 2,6 miliar per minggu.
“Kami dengan senang hati memberitahukan bahwa John telah menandatangani kontrak baru berdurasi lima tahun, yang membuat dia bertahan di klub ini sampai akhir musim 2013/2014,” demikian pernyataan Chelsea. “Ini menegaskan bahwa John dan Chelsea ingin berada di Stamford Bridge sepanjang karirnya.” Pria bertubuh tegap itu melakoni debutnya di tim senior Chelsea pada 28 Oktober 1998, dan mulai stabil menjadi pemain reguler di musim 2000/2001. Ia menjadi starter dalam 23 pertandingan liga dan di akhir musim terpilih sebagai pemain terbaik klub tersebut.
Ban kapten pertama disandangnya pada 5 Desember 2001, dan jabatan itu mulai dipercayakan penuh mulai musim 2003/2004, ketika tim dilatih Claudio Ranieri dan Marcel Desailly mulai tersingkir dari tim utama. Selama membela Chelsea Terry telah mengoleksi dua titel Premiership, tiga Piala FA, dua Piala Liga Inggris, dan dua titel Community Shied. Gelar individual yang pernah ia menangi adalah PFA Player of the Year (2005, 2006), bek terbaik UEFA (2005, 2008, 2009), UEFA Team of the Year (2005, 2007, 2008), dan Chelsea Player of the Year (2001, 2006).  Di level internasional, Terry telah menjadi bagian dari skuad “Tiga Singa” sejak 2003 dan mulai Agustus 2006 menjadi kapten timnas. Sejauh ini ia telah memiliki 54 caps dan mencetak enam gol.

Chelsea rekrut pemain usia 11 tahun



London - Chelsea mendatangkan Michael Gyasi, pemain belia berusia 11 tahun dari klub Northampton. Pemain berposisi striker ini merupakan produk dari akademi Northampton.

Seperti diberitakan BBC, Chelsea membooyong Gyasi ke Stamford Bridge dengan nilai transfer yang tidak diungkapkan.

Gyasi telah bermain di tim U-11 klub League Two itu sejak tiga tahun terakhir. Potensi yang ditunjukkan Gyasi membuat Chelsea tertarik untuk merekrutnya.

Jumlah yang dibayarkan Chelsea bisa bertambah secara singifikan bila mengaju pada sejumlah klausa dalam kesepakatan tersebut.

"Kami tentu saja ingin menghasilkan dan menjaga pemain-pemain terbaik yang kami miliki. Namun ketika klub Liga Primer seperti Chelsea datang, selama kesepakatan itu mendukung kepentingan klub, kami tidak akan menghalanginya," kata ketua akademi Cobblers Trevor Gould.

"Kesepakatan ini bukan hanya kesempatan besar bagi Michael namun juga semakin memperkuat kualitas pemain-pemain baik yang dimiliki klub mau pun akademi ini."

"Secara finansial, kesepakatan ini bagus bagi kami. Uang yang kami terima akan kami gunakan untuk pengembangan pemain muda, membantu kami dalam hal perawatan dan peningkatan infrastruktur dan fasilitas yang sudah ada dan juga soal kepelatihan."

Gyasi selanjutnya akan "disekolahkan" di akademi pembinaan tim London Barat guna mengasah potensinya.

Seperti dilansir dari Vital Football, tahun lalu pemain binaan Northampton juga direkrut oleh tim Liga Primer. Dia bernama Courtney Cameron yang direkrut Aston Villa.

AHAMAED NIKKI, the next Maradona

Nikki Ahamed Pemain Muda Chelsea Dari Sri Lanka



  • Ketika saya sedang browsing serta melihat-lihat tim academy Chelsea sambil mencari data tentang Chelsea FC, saya menemukan nama Ahamed Nikki di Chelsea Academy. Mengapa Nikki?? karena dia keturunan Asia yaitu di negara kecil yang bernama Sri Lanka.

    Iseng-iseng blogwalking sambil baca artikel ada satu nama yang dia merupakan orang asia (di blog itu dijelasin bila dia disamakan (lebih tepatnya diibaratkan) maradona asia yang bermain pada posisi tengah. Karena informasi yang didapat masih kurang mungkin hanya beberapa info yang bisa didapat dari Nikki Ahmed ini berikut sekilas tentang Nikki Ahmed.

    Nikki Ahamed lahir di Kolombo, Sri Lanka 18 tahun silam tepatnya 18 april 1991. Sebelumnya keluarganya pindah ke London di mana ia dibesarkan di daerah Wembley, Inggris. Anak muda ini bergabung dengan Chelsea sejak ia berusia sepuluh tahun.

    Dalam kancah Eropa, Ahamed Nikki bermain pada saat Chelsea bertanding melawan APOEL Nicosia di ajang liga champion. Dia seorang gelandang bertahan, yang juga bisa bermain di fullback.

    Sekarang tahun ketiga di Tim academy Chelsea, dan membuat penampilan puncak pada musim lalu dengan 28 permainan yang dimainkan, mencetak dua kali gol, dan sekarang perlahan mulai masuk ke tim cadangan chelsea.

    sumber : chelseafc.com, google

  • E8

    E8 (mathematics)


    Group theory
    Rubik's cube v2.svg
    Group theory
    Lie groups
    E8PetrieFull.svg
    In mathematics, E8 is any of several closely related exceptional simple Lie groups, linear algebraic groups and Lie algebras of dimension 248; the same notation is used for the corresponding root lattice, which has rank 8. The designation E8 comes from the Cartan–Killing classification of the complex simple Lie algebras, which fall into four infinite series labeled An, Bn, Cn, Dn, and five exceptional cases labeled E6, E7, E8, F4, and G2. The E8 algebra is the largest and most complicated of these exceptional cases.
    Wilhelm Killing (1888, 1888, 1889, 1890) discovered the complex Lie algebra E8 during his classification of simple compact Lie algebras, though he did not prove its existence, which was first shown by Élie Cartan. Cartan determined that a complex simple Lie algebra of type E8 admits three real forms. Each of them gives rise to a simply-connected simple Lie group of dimension 248, exactly one of which is compact. Algebraic groups and Lie algebras of type E8 over other fields have also been considered: for example, in the case of finite fields they lead to an infinite family of finite simple groups of Lie type.

    Contents

    [hide]

    [edit] Basic description

    The compact Lie group E8 has dimension 248. Its rank, which is the dimension of its maximal torus, is 8. Therefore the vectors of the root system are in eight-dimensional Euclidean space: they are described explicitly later in this article. The Weyl group of E8, which is the group of symmetries of the maximal torus which are induced by conjugations in the whole group, has order 696729600.
    The compact group E8 is unique among simple compact Lie groups in that its non-trivial representation of smallest dimension is the adjoint representation (of dimension 248) acting on the Lie algebra E8 itself; it is also the unique one which has the following four properties: trivial center, compact, simply connected, and simply laced (all roots have the same length).
    There is a Lie algebra En for every integer n ≥ 3, which is infinite dimensional if n is greater than 8.

    [edit] Real and complex forms

    There is a unique complex Lie algebra of type E8, corresponding to a complex group of complex dimension 248. The complex Lie group E8 of complex dimension 248 can be considered as a simple real Lie group of real dimension 496. This is simply connected, has maximal compact subgroup the compact form (see below) of E8, and has an outer automorphism group of order 2 generated by complex conjugation.
    As well as the complex Lie group of type E8, there are three real forms of the Lie algebra, three real forms of the group with trivial center (two of which have non-algebraic double covers, giving two further real forms), all of real dimension 248, as follows:
    • A compact form (which is usually the one meant if no other information is given), which is simply connected and has trivial outer automorphism group.
    • A split form, which has maximal compact subgroup Spin(16)/(Z/2Z), fundamental group of order 2, and a non-algebraic double cover and has trivial outer automorphism group.
    • A third form, which has maximal compact subgroup E7×SU(2)/(−1×−1), fundamental group of order 2, and a non-algebraic double cover and has trivial outer automorphism group.
    For a complete list of real forms of simple Lie algebras, see the list of simple Lie groups.
    There is also at least one algebraic group and Lie algebra of type E8 over any field (or even commutative ring), called the split form. Over algebraically closed fields this is unique, but over other fields there are often many other forms of E8.

    [edit] Representation theory

    The characters of finite dimensional representations of the real and complex Lie algebras and Lie groups are all given by the Weyl character formula. The dimensions of the smallest irreducible representations are (sequence A121732 in OEIS):
    1, 248, 3875, 27000, 30380, 147250, 779247, 1763125, 2450240, 4096000, 4881384, 6696000, 26411008, 70680000, 76271625, 79143000, 146325270, 203205000, 281545875, 301694976, 344452500, 820260000, 1094951000, 2172667860, 2275896000, 2642777280, 2903770000, 3929713760, 4076399250, 4825673125, 6899079264, 8634368000, 8634368000, 12692520960…
    The 248-dimensional representation is the adjoint representation. There are two non-isomorphic irreductible representations of dimension 8634368000. The fundamental representations are those with dimensions 3875, 6696000, 6899079264, 146325270, 2450240, 30380, 248 and 147250 (corresponding to the eight nodes in the Dynkin diagram in the order chosen for the Cartan matrix below, i.e., the nodes are read in the seven-node chain first, with the last node being connected to the third).
    The coefficients of the character formulas for infinite dimensional irreducible representations of E8 depend on some large square matrices consisting of polynomials, the Lusztig–Vogan polynomials, an analogue of Kazhdan–Lusztig polynomials introduced for reductive groups in general by George Lusztig and David Kazhdan (1983). The values at 1 of the Lusztig–Vogan polynomials give the coefficients of the matrices relating the standard representations (whose characters are easy to describe) with the irreducible representations.
    These matrices were computed after four years of collaboration by a group of 18 mathematicians and computer scientists, led by Jeffrey Adams, with much of the programming done by Fokko du Cloux. The most difficult case (for exceptional groups) is the split real form of E8 (see above), where the largest matrix is of size 453060×453060. The Lusztig–Vogan polynomials for all other exceptional simple groups have been known for some time; the calculation for the split form of E8 is far longer than any other case. The announcement of the result in March 2007 received extraordinary attention from the media (see the external links), to the surprise of the mathematicians working on it.
    The representations of the E8 groups over finite fields are given by Deligne–Lusztig theory.

    [edit] Constructions

    One can construct the (compact form of the) E8 group as the automorphism group of the corresponding e8 Lie algebra. This algebra has a 120-dimensional subalgebra so(16) generated by Jij as well as 128 new generators Qa that transform as a Weyl–Majorana spinor of spin(16). These statements determine the commutators
    [J_{ij},J_{k\ell}]=\delta_{jk}J_{i\ell}-\delta_{j\ell}J_{ik}-\delta_{ik}J_{j\ell}+\delta_{i\ell}J_{jk}
    as well as
    [J_{ij},Q_a] = \frac 14 
(\gamma_i\gamma_j-\gamma_j\gamma_i)_{ab} Q_b,
    while the remaining commutator (not anticommutator!) is defined as
    [Q_a,Q_b]=\gamma^{[i}_{ac}\gamma^{j]}_{cb} 
J_{ij}.
    It is then possible to check that the Jacobi identity is satisfied.

    [edit] Geometry

    The compact real form of E8 is the isometry group of a 128-dimensional Riemannian manifold known informally as the 'octo-octonionic projective plane' because it can be built using an algebra that is the tensor product of the octonions with themselves. This can be seen systematically using a construction known as the magic square, due to Hans Freudenthal and Jacques Tits (Landsberg & Manivel 2001).

    [edit] E8 root system

    Zome model of the E8 root system.
    A root system of rank r is a particular finite configuration of vectors, called roots, which span an r-dimensional Euclidean space and satisfy certain geometrical properties. In particular, the root system must be invariant under reflection through the hyperplane perpendicular to any root.
    The E8 root system is a rank 8 root system containing 240 root vectors spanning R8. It is irreducible in the sense that it cannot be built from root systems of smaller rank. All the root vectors in E8 have the same length. It is convenient for many purposes to normalize them to have length √2.

    [edit] Construction

    Graph of E8 projected into the Coxeter plane
    In the so-called even coordinate system E8 is given as the set of all vectors in R8 with length squared equal to 2 such that coordinates are either all integers or all half-integers and the sum of the coordinates is even.
    Explicitly, there are 112 roots with integer entries obtained from
    (\pm 1,\pm 1,0,0,0,0,0,0)\,
    by taking an arbitrary combination of signs and an arbitrary permutation of coordinates, and 128 roots with half-integer entries obtained from
    \left(\pm\tfrac12,\pm\tfrac12,\pm\tfrac12,\pm\tfrac12,\pm\tfrac12,\pm\tfrac12,\pm\tfrac12,\pm\tfrac12\right)
 \,
    by taking an even number of minus signs (or, equivalently, requiring that the sum of all the eight coordinates be even). There are 240 roots in all.
    The 112 roots with integer entries form a D8 root system. The E8 root system also contains a copy of A8 (which has 72 roots) as well as E6 and E7 (in fact, the latter two are usually defined as subsets of E8).
    In the odd coordinate system E8 is given by taking the roots in the even coordinate system and changing the sign of any one coordinate. The roots with integer entries are the same while those with half-integer entries have an odd number of minus signs rather than an even number.

    [edit] Simple roots

    Graph of E8 Hasse diagram
    A set of simple roots for a root system Φ is a set of roots that form a basis for the Euclidean space spanned by Φ with the special property that each root has components with respect to this basis that are either all nonnegative or all nonpositive.
    One choice of simple roots for E8 is given by the rows of the following matrix:
    \left [\begin{smallmatrix}
\frac{1}{2}&-\frac{1}{2}&-\frac{1}{2}&-\frac{1}{2}&-\frac{1}{2}&-\frac{1}{2}&-\frac{1}{2}&\frac{1}{2}\\
-1&1&0&0&0&0&0&0
 \\
0&-1&1&0&0&0&0&0 \\
0&0&-1&1&0&0&0&0 \\
0&0&0&-1&1&0&0&0 \\
0&0&0&0&-1&1&0&0 \\
0&0&0&0&0&-1&1&0 \\
1&1&0&0&0&0&0&0 \\
\end{smallmatrix}\right ].
    The set of simple roots is by no means unique (the number of possible choices of positive roots is the order of the Weyl group); however, the particular choice displayed above has the unique property that the positive roots are then exactly those whose rightmost nonzero coordinate is positive.

    [edit] Dynkin diagram

    The Dynkin diagram for E8 is given by
    Dynkin diagram of 
E8
    This diagram gives a concise visual summary of the root structure. Each node of this diagram represents a simple root. A line joining two simple roots indicates that they are at an angle of 120° to each other. Two simple roots which are not joined by a line are orthogonal.

    [edit] Weyl group

    The Weyl group of E8 is of order 696729600, and can be described as O8+(2): it is of the form 2.G.2 (that is, a stem extension by the cyclic group of order 2 of an extension of the cyclic group of order 2 by a group G) where G is the unique simple group of order 174182400 (which can be described as PSΩ8+(2)).[1]

    [edit] Cartan matrix

    The Cartan matrix of a rank r root system is an r × r matrix whose entries are derived from the simple roots. Specifically, the entries of the Cartan matrix are given by
    A_{ij} = 
2\frac{(\alpha_i,\alpha_j)}{(\alpha_i,\alpha_i)}
    where (−,−) is the Euclidean inner product and αi are the simple roots. The entries are independent of the choice of simple roots (up to ordering).
    The Cartan matrix for E8 is given by
    \left [
\begin{smallmatrix}
 2 & -1 &  0 &  0 &  0 &  0 &  0 & 0 \\
-1 &  2 & -1&  0 &  0 &  0 &  0 & 0 \\
 0 & -1 &  2 & -1 &  0 &  0 &  0 & -1 \\
 0 &  0 & -1 &  2 & -1 &  0 &  0 & 0 \\
 0 &  0 &  0 & -1 &  2 & -1 &  0 & 0 \\
 0 &  0 &  0 &  0 & -1 &  2 & -1 & 0 \\
 0 &  0 &  0 &  0 &  0 & -1 &  2 & 0 \\
 0 &  0 & -1 &  0 &  0 &  0 &  0 & 2
\end{smallmatrix}\right ].
    The determinant of this matrix is equal to 1.

    [edit] E8 root lattice

    The integral span of the E8 root system forms a lattice in R8 naturally called the E8 root lattice. This lattice is rather remarkable in that it is the only (nontrivial) even, unimodular lattice with rank less than 16.

    [edit] Simple subalgebras of E8

    An incomplete simple subgroup tree of E8
    The Lie algebra E8 contains as subalgebras all the exceptional Lie algebras as well as many other important Lie algebras in mathematics and physics. The height of the Lie algebra on the diagram approximately corresponds to the rank of the algebra. A line from an algebra down to a lower algebra indicates that the lower algebra is a subalgebra of the higher algebra. Some algebras are more obvious such as SU(n) is a subalgebra of O(2n) and some are less obvious especially the exceptional algebras G2, F4, E6 & E7. The orthogonal and unitary[disambiguation needed] subalgebras are particularly important in physics as they are used to represent space-time and bosonic symmetries respectively. Some of the smaller algebras are equivalent e.g. O(3)~SU(2).

    [edit] Chevalley groups of type E8

    As an algebraic group, E8 can be defined over the integers (by means of a Chevalley basis for the Lie algebra) hence, in particular, over any commutative ring. Its points over a finite field with q elements form a finite Chevalley group, generally written E8(q), which is simple for any q.[2][3] Its number of elements is given by the formula (sequence A008868 in OEIS):
    q120(q30 − 1)(q24 − 1)(q20 − 1)(q18 − 1)(q14 − 1)(q12 − 1)(q8 − 1)(q2 − 1)
    The first term in this sequence, the order of E8(2), namely 337804753143634806261388190614085595079991692242467651576160959909068800000 ≈ 3.38×1074, is already larger than the size of the Monster group; Coxeter and Moser[4] remark that it is comparable (actually about 5×105 times smaller) to Eddington's historical estimation of the number of protons in the Universe. This group E8(2) is the last one described (but without its character table) in the ATLAS of Finite Groups[5].

    [edit] Subgroups

    The smaller exceptional groups E7 and E6 sit inside E8. In the compact group, both (E7×SU(2)) / (Z/2Z) and (E6×SU(3)) / (Z/3Z) are maximal subgroups of E8.
    The 248-dimensional adjoint representation of E8 may be considered in terms of its restricted representation to the first of these subgroups. It transforms under SU(2)×E7 as a sum of tensor product representations, which may be labelled as a pair of dimensions as
    (3,1) + (1,133) + (2,56). \,\!
    (Since there is a quotient in the product, these notations may strictly be taken as indicating the infinitesimal (Lie algebra) representations.) Since the adjoint representation can be described by the roots together with the generators in the Cartan subalgebra, we may see that decomposition by looking at these. In this description:
    • The (3,1) consists of the roots (0,0,0,0,0,0,1,−1), (0,0,0,0,0,0,−1,1) and the Cartan generator corresponding to the last dimension.
    • The (1,133) consists of all roots with (1,1), (−1,−1), (0,0), (−1/2,−1/2) or (1/2,1/2) in the last two dimensions, together with the Cartan generators corresponding to the first 7 dimensions.
    • The (2,56) consists of all roots with permutations of (1,0), (−1,0) or (1/2,−1/2) in the last two dimensions.
    The 248-dimensional adjoint representation of E8, when similarly restricted, transforms under SU(3)×E6 as:
    (8,1) + (1,78) + (3,27) + 
(\overline{3},\overline{27}).
    We may again see the decomposition by looking at the roots together with the generators in the Cartan subalgebra. In this description:
    • The (8,1) consists of the roots with permutations of (1,−1,0) in the last three dimensions, together with the Cartan generator corresponding to the last two dimensions.
    • The (1,78) consists of all roots with (0,0,0), (−1/2,−1/2,−1/2) or (1/2,1/2,1/2) in the last three dimensions, together with the Cartan generators corresponding to the first 6 dimensions.
    • The (3,27) consists of all roots with permutations of (1,0,0), (1,1,0) or (−1/2,1/2,1/2) in the last three dimensions.
    • The (3,27) consists of all roots with permutations of (−1,0,0), (−1,−1,0) or (1/2,−1/2,−1/2) in the last three dimensions.
    The finite quasisimple groups that can embed in (the compact form of) E8 were found by Griess & Ryba (1999)

    [edit] Invariant polynomial

    E8 is the automorphism group of an octic polynomial invariant, thought to be the lowest order symmetric polynomial invariant of E8.[6]

    [edit] Applications

    The E8 Lie group has applications in theoretical physics, in particular in string theory and supergravity. The group E8×E8 (the Cartesian product of two copies of E8) serves as the gauge group of one of the two types of heterotic string and is one of two anomaly-free gauge groups that can be coupled to the N = 1 supergravity in 10 dimensions. E8 is the U-duality group of supergravity on an eight-torus (in its split form).
    One way to incorporate the standard model of particle physics into heterotic string theory is the symmetry breaking of E8 to its maximal subalgebra SU(3)×E6.
    In 1982, Michael Freedman used the E8 lattice to construct an example of a topological 4-manifold, the E8 manifold, which has no smooth structure.
    R. Coldea, D. A. Tennant, and E. M. Wheeler et al. (2010) reported that in an experiment with a cobalt-niobium crystal, under certain physical conditions the electron spins in it exhibited two of the 8 peaks related to E8 predicted by Zamolodchikov (1989) .